月度归档:2022年06月

开启或禁止本机发送UDP包

禁用本机UDP发送:iptables -A OUTPUT -p udp -j DROP
检查刚才添加的规执序号:iptables -nL OUTPUT –line-number

删除刚才添加的规执:iptables -D OUTPUT 2
确认刚才删除的规执是否删除:iptables -nL OUTPUT –line-number

iptables -F #清空所有规则:

iptables -I INPUT -p UDP -j ACCEPT

接受某个UDP端口:iptables -I INPUT -p UDP –dport 11111 -j ACCEPT

开启1111端口:
iptables -I INPUT -p UDP –dport 11111 -j ACCEPT
service iptables save

vi /etc/sysconfig/iptables
#插入下面这一行
-A INPUT -p udp -m udp –dport 11111 -j ACCEPT
#vi保存退出
wq
#重启
iptables service iptables restart

无损压缩算法

https://dzone.com/articles/crunch-time-10-best-compression-algorithms

1. LZ77

2. LZR

3. LZSS

4. DEFLATE

5. LZMA

6. LZMA2

4种基于深度学习的图像/视频压缩算法

除了上面介绍的静态压缩算法,还有基于深度学习的压缩算法可供选择。

4种基于深度学习的图像/视频压缩算法

除了上面介绍的静态压缩算法,还有基于深度学习的压缩算法可供选择。

1. 基于多层感知机的压缩算法

多层感知机(Multi-Layer Perceptron,MLP)技术使用多层神经元来获取、处理以及输出数据。它能够被应用到数据降维任务和数据压缩。首个基于MLP的算法于1988年被提出,目前已经被应用到:

  • 二进制编码——标准的双符号编码
  • 量化——限制从连续集到离散集的输入
  • 特定领域内的转换——像素级的数据变更

MLP算法利用分解神经网络上一步的输出来确定最佳的二进制码组合。后面,使用预测技术优化这个方法。预测技术能够通过反向传播基于相邻数据来提升数据准确度。

2. DeepCoder — 基于视频压缩的深度神经网络

DeepCoder是一个基于卷积神经网络(CNN)的框架,它是传统视频压缩技术的替代。该模型为预测信号和残留信号使用单独的CNN。它使用标量量化技术和一个传统的文件压缩算法——霍夫曼编码——将编码特征映射到一个二进制流中。一般认为,该模型的性能要优于著名的H.264/AVC视频编码规范。

3. 基于CNN的压缩算法

CNN是分层的神经网络,通常用于图像识别和特征检测。当应用到压缩时,这些神经网络使用卷积操作来计算相邻像素点之间的相关性。CNN展示出了比基于MLP算法更好的压缩结果,提升了超分辨率下的性能以及减少了伪影。另外,基于CNN的压缩还提升了JPEG图像的品质,因为它减少了峰值信噪比(PSNR)和结构相似性(SSIM)。基于CNN的压缩通过使用熵估计法还实现了HEVC的性能。

4. 基于生成式对抗网络(GAN)的压缩算法

GAN属于神经网络的一种,它使用两个神经网络彼此竞争的方式来产生更精确的分析和预测。最早基于GAN的压缩算法于2017年被提出。这些算法的文件压缩比例是其他常见方法(如JPEG、WebP等)的2.5倍。你可以使用基于GAN的方法通过并行化处理来实现实时压缩。主要的原理是基于最相关的特征来压缩图片。当解码的时候,算法基于这些特征来重建图像。和基于CNN算法相比,基于GAN的压缩算法通过消除对抗损失能够产生更高品质的图像。